## A Semi-Classical Description of the Shears Mechanism: The Role of Effective Interactions.<sup>†</sup>

A.O. Macchiavelli, R.M. Clark, P. Fallon, M.A. Deleplanque, R.M. Diamond, I.Y. Lee, F.S. Stephens, and K. Vetter

In the previous abstract we presented a semiclassical analysis of electromagnetic properties in the shears bands in  $^{198,199}\text{Pb}$ . In what follows we study the nature of the effective interaction needed to reproduce a rotational-like spectrum. Knowing the angle  $\theta$  between  $\vec{j}_{\pi}$  and  $\vec{j}_{\nu}$  and the level energies it is also possible to obtain information about this effective interaction,  $V_{\pi\nu}$ , between the protons and the neutrons<sup>1</sup>. For spatial forces we can expand in even multipoles as:

$$V_{\pi\nu}(\theta) = V_0 + V_2 P_2(\theta) + \dots$$
 (1)

Let us now assume for simplicity that we have a neutron and a proton of the same j coupled to spin I and interacting via a term of the form  $V_2P_2(\theta)$ . The energy along the band is given only by the change in potential energy due to the recoupling of the angular momenta and therefore

$$\Delta E(I) \propto V_2 \frac{(3\cos^2\theta(I) - 1)}{2}$$
 (2)

In Fig. 1 we show the dependence of this term as a function of I and  $\theta$  for the particle-particle (hole-hole) and particle-hole cases. As can be seen, the minimum of the potential energy for the particle-particle case occurs at  $\theta = 180^{\circ}$ , I = 0 where the overlap between the particle wave functions is maximum. Since for I < j we have  $sin\theta \approx (I/i)$ , it follows from Eq. (2) that the low-spin members of the (2j + 1)-multiplet are split approximately by  $I^2$  as shown with the dashed curve. If we now turn our attention to the particle-hole channel, which is the situation in the Pb bands, the interaction changes sign and the minimum occurs at  $\theta = 90^{\circ}$ ,  $I_{90} = \sqrt{2}j$ . We then obtain  $\Delta E \propto (I - I_{90})^2$ , as observed in experiment with  $I_{90}$  representing the spin of the bandhead. We note that the particle-particle or

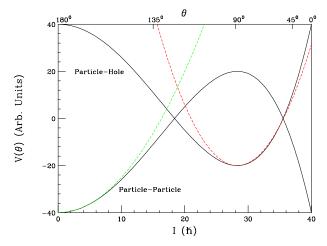



Figure 1: Particle-particle(hole) potential as a function of angular momentum and  $\theta$  for an interaction of the form  $V_2P_2(\theta)$ . The dashed lines correspond to a rotational approximation

hole-hole channels can provide the basic coupling schemes for the so-called  $Anti-magnetic\ Rotor\ ^2$ .

The mass dependence of the moment of inertia,  $\mathcal{J}$ , of these M1 bands follows from Eq. (2). We have  $\mathcal{J} \propto j^2/V_2$ , and with the overall dependence  $j \sim A^{1/3}$  and  $V_2 \sim A^{-1}$  then  $\mathcal{J} \sim A^{5/3}$  as in the case of normal rotational bands. Although the available information is still limited to a few examples that span a broad range of masses, they seem to confirm this prediction.

## References

- † Accepted for publication in Phys. Rev. C, Rapid Communication.
- 1 N. Anantaraman and J.P. Schiffer, *Phys. Lett.* **37B**, 229, (1971).
- 2 S. Frauendorf, Proceedings of the Conference on Physics from Large γ- Detector Arrays, Berkeley 1994, Report LBL-35687, Vol. 2, p. 52.